

Pico-Second VII Workshop Argonne National Lab February 26, 2009

2021 Miller Drive, Suite E Longmont, CO 80501 www.synkera.com

AAO/ALD AS A PLATFORM FOR LARGE AREA MCP's - PROSPECTS AND LIMITATIONS FROM THE MATERIALS PERSPECTIVE

Dmitri Routkevitch, Ph.D.

Product Manager and Principal Scientist

Copyright 2009 - Synkera Technologies Inc.

OUTLINE

INTRODUCTION

- AAO AS A NANO/MICROFABRICATION PLATFORM
- ORIGINS OF THE AAO-BASED MCPs

AAO AS MICROCHANNEL PLATE SUBSTRATE

- MICROMACHINED CHANNELS vs. "NATIVE" NANOPORES
- AAO vs. GLASS vs. SILICON
- SCALABILITY (CHANNEL DIAMETER vs. ASPECT RATIO vs. SIZE)

SYNKERA AAO-MCP DEVELOPMENT

- MICROMACHINED CERAMIC MICROCHANNEL PLATES
- "NATIVE" PORES SUBMICROCHANNEL PLATES
- ALD FOR CHANNEL MODIFICATION TOOL
- SCALE-UP

HOW CAN SYNKERA PARTICIPATE?

COMPANY OVERVIEW

Core strengths

 Nanotechnology, materials science and engineering, chemical sensing and separation, microfabrication

Current Products/Services

- Gas sensors and modules
- Ceramic membranes
- Contract research

Markets

- Industrial health and safety, air quality
- Gas separation, hydrogen generation, R&D
- Emerging markets: clean and alternative energy, bio- and life sciences, filtration

Mission - bring practical products to the market through advanced knowledge and precision engineering of materials.

ANODIC ALUMINUM OXIDE (AAO) INTRODUCTION

- High quality self-organized material with regular nanoporous lattice
- Uniform & aligned arrays of cylindrical nanopores
- Formed by anodic oxidation of Al in certain electrolytes
- Tunable parameters

Pore diameter: 5 - 300 nm
 Pore density: 10¹² - 10⁸ cm⁻²

• Thickness: $0.1 - 300 \mu m$

- Scaleable, manufacturing-friendly
- Platform for nano/microfabrication

HISTORY OF AAO IN MICRODEVICES

- 1970-80 pioneering work on microdevices from AAO at the Institute of Electronics, National Acad. Sci., Belarus, Minsk.
- 1989 first disclosure, 1994 first publication after projects were declassified
 - Grigorishin et al., Revue "Le Ville, les Couches Minces", Grenoble, France, Suppl. N271, 304 (1994)
 - Grigorishin, Mukhurov, et al., Proc. 7th Conf. of ITG Committee "Vacuum Electronics and Displays", VDE, Verlag, 132, 155 (1995)
 - Govyadinov, Mardilovich et al., ibid.,132, 161 (1995)
- 1995 first publications by others:
 - Reed et al., Proc. of IEEE MEMS'95, 267 (1995)
 - Gösele et al., Adv. Mater. 11(6), 483 (1999)
- 1997, 98 ceramic MCP and s-MCPs
 - Govyadinov, Emeliantchik, Kurilin, Anodic Alumina Microchannel Plates, Nucl. Instr. Methods Phys. Res., A 419, 667-675 (1998)
 - Raspereza, Govyadinov, Kurilin, Kukhnovetc, Emel'yanchik, et al., Submicrochannel plate multipliers, Appl. Surf. Sci. 111, 295-301 (1997)

NANO- and MICROFABRICATION PLATFORM

Synkera's product development is supported by a unique technology platform based on nanoporous anodic alumina

Core capabilities enabled by anodic alumina:

- Nanoscale engineering of materials architecture and performance
- Ceramic micromachining
- Integration of materials into functional devices
- Scaleable processes amenable to high volume manufacturing

PRODUCT GROUPS

Gas Processing

- Membranes, reactors & adsorbents
- Fuel cell systems (H₂)
- Oil and gas (H₂, He)
- Petrochemical (H₂)
- Distributed (H₂)

Liquid Filtration Membranes

- Ultra/nanofiltration
- Water purification
- Bioanalysis
- Life Sciences

PRODUCT PLATFORM

- Nano / microscale engineering
 - Scalable manufacturing

Energy Conversion

- Gen-3 PV for solar cells
- Photocatalysts water splitting
- Radiation Detection
- Photonics

Gas Sensors

- Industrial health & safety
- Air quality control
- Environmental monitoring
- Homeland security

Ceramic Microdevices

- Ceramic MCPs
- Microcomponents for harsh environments
- Chips for cell culturing, bioanalysis & bioimaging
- Bio- and life sciences

SYNKERA FACILITIES

Over 5,000 sq. ft. RD&E and production facility:

- materials processing
- wet laboratory
- analytical equipment
- pilot-scale manufacturing
- testing & QC

Capacity

- thousands to tens of thousands of components per year
- plans in place for increasing to 100's of thousands of devices per year

AAO AS MICROCHANNEL PLATE SUBSTRATE

TWO-TIER APPROACH

LARGE AREA MCP - MATERIALS PERSPECTIVE

	GLASS	SILICON	AAO micromachined	AAO native pores
Status / Availability	mature & improving products	on hold	prototype development	early feasibility
Projected Price (for large scale)	\$\$\$	\$\$	\$\$	\$
Max Size	1 - 20 cm	up to 30 cm	up to 30 cm	up to few m
Channel Size, µm	2 - 50	2 - 50	3 - 50	too small / 0.01 - 0.2 / generic better / up to 0.8 / Synkera
L/D	satisfactiry	satisfactiry	low / generic up to 80 / Synkera	too high / generic better / Synkera
Channel Uniformity	artifacts / improving	excellent	potentially excellent (TBC)	
Channel Bias	satisfactiry	satisfactiry	n/a (generic) 0 - 15° (Synkera)	
Max Temperature	250	500	1100	
Mechanical Durability	low	poor	robust	very robust
Environmental Sensitivity	poor (moisture)	good	excellent	
TCR	negative	negative	positive	
Lifetime at high rate	months	months?	potentially years (TBC)	
Count Rate	low ?	med	potentially high (TBC)	
Dynamic Range, S/N	good	good	potentially high (TBC)	
Manufacturability of large ps MCPs	poor	?	medium	excellent

CHANNEL DIAMETER

Synkera AAO, intrinsic pores

Micromachined AAO

Generic AAO, intrinsic pores

Glass MCPs

0.01

0.1

0.5

1

5

10 µm

Challenges

- diameter native pores
 microfab, channels
- thickness
- channel bias

Generic AAO

< 0.2 µm

> 3 µm

0.2 mm

0

Synkera AAO

< 0.8 µm

> 2 µm

up to 1.5 mm

0 - 15° feasible

L/D, OAR, channel roughness, realizing functional prototypes ...

ALD for MCP CHANNEL MODIFICATION

ALD CHANNEL FUNCTIONALIZATION

- A. $ZnOH^* + Zn(CH_2CH_3)_2 \rightarrow ZnOZn CH_3CH_3^* + CH_3CH_3$
- B. $\frac{\text{ZnCH}_2\text{CH}_3* + \text{H}_2\text{O} -> \text{ZnOH}^* + \text{CH}_3\text{CH}_3}{\text{Zn(CH}_2\text{CH}_3)_2 + \text{2H}_2\text{O} -> \text{Zn(OH)}_2 + \text{CH}_3\text{CH}_3}$
- ALD: self-limiting binary reactions
- Thickness = f(number of cycles)
- Precise control of layer composition and properties - critical for MCPs
 - resistance layer
 - electron emission layer
 - channel diameter, roughness
 - gradients of composition and properties to make complex layers
- Mixed Al₂O₃/ZnO provide 14 orders of magnitude resistance variations

near the surface 25 μm deep 65 nm pores, ~10 nm ALD

J. Electrochem. Soc. 2002, 150, G339-G347. Chem. Materials, 15, 3507-3517 (2003).

ALD FACILITY AND CAPABILITIES

SYNKERA ALD FACILITY

- Fully automated ALD reactor; 6 precursor channels
- Operating modes: low for flats, static for AAO
- Batch processing up to 20 of 2" MCP membranes
- Processes validated for a number of materials (oxides, nitrides, metals)
- Collaboration with S. George, CU

CHALLENGES for AAO

- · High surface area
- High aspect ratio
- Large doses required, thus high rate of precursor consumption and maintenance

MCP-RELEVANT COATINGS

- Resistive coatings developed
- Emissive coatings developed (Al2O3, MgO)
- Semiconductor coatings developed (GaN, InN)

MCP PROTOTYPE FABRICATION

- Prototypes with micromachined channels fabricated
- Prototypes with intrinsic pores in development

ALD COATING ON MICROCHANNEL PLATE

AAO-based MCP with ALD coating inside micromachined channels.

- Note uniform & conformal layer with excellent adhesion
- ALD coating survived annealing to 900°C without failure
- Leveling surface roughness
- Diameter reduction is possible by depositing thick layers

MICROMACHINED CHANNELS

MICROMACHINING OF ANODIC ALUMINA

- High resolution, high aspect ratio ceramic micromachining
- Inexpensive, large-scale substrates, conventional exposure sources
- An enabling technology for a number of ceramic MEMS products

LOW RESOLUTION MCP SUBSTRATES

- Channels >10 μm; thickness 50-300 μm; can be annealed to gamma/theta-alumina
- Prototype MCPs with low resolution channels produced and tested,
- Blank 25 mm substrates available (current work at SSL on III-V photocathodes)

HIGH RESOLUTION CHANNELS

- Ceramic MCP substrate with ~3 μm channels, 60-100 μm thick
- Under development

MAXIMIZING OPEN AREA

- 25 µm channel diam, 100 µm thickness
- 60% for round channels in *hcp* lattice
- up to 80% in square channels

INTRINSIC ION FEEDBACK BARRIER?

BIAS ANGLE or EQUIVALENT

Approach #1: bias the nanopores, then translate into the microchannel bias

feasibility demonstrated.

Approach #1: funnel-shaped pore entrance (intrinsic pores)

inherent feature of Synkera free-standing AAO

TESTING AT UC BERKELEY

- Channel diameter 10 μm; D/L = 10
- Tested at UC Berkeley, Space Science lab
- Ceramic MCP (bias varied) was in front of two glass MCP (1500V bias).
- Testing demonstrated appreciable gain and sensitivity to UV photons
- Breakdown voltage up to 1000V
- "Self-healing" of the breakdown defects during ramp-up

INITIAL TESTING AT UC BERKELEY

- Full flood image at 2537Å
- Alumina + 2 glass MCP stack

- Full flood gain map at 2537Å
- Alumina + 2 glass MCP stack

INTRINSIC CHANNELS

ACHIEVING TARGET CHANNEL DIAMETER / PITCH

ANODIZATION VOLTAGE (V)

Pore Pitch:

- Proportional to anodization voltage
- Does not depend on electrolyte, temp.

Pore Diameter:

Increases with voltage, [H+] and temp.

Challenge: increasing anodization voltage

- Factors to consider
 - Upper voltage limit
 - Anodization rate

Approach: new electrolytes & procedures

PORE ORDERING

- Al was pre-anodized and anodized at 195 V, followed by pore widening
- Resulting pore diameter ~0.3 μm, pore period ~0.55 μm
- Number of methods available to improve pore ordering:
 - Pre-anodization well-known (Masuda papers, Synkera proprietary procedures)
 - Nanoimprint lithography DO NOT HAVE TO PATTERN EVERY PORE
 - conventional nanoimprint methods and tools
 - nanosphere imprint (Fournier-Bidoz, Kitaev, Routkevitch, et al, Highly Ordered Nanosphere Imprinted Nanoporous Anodic Alumina, Adv. Mater., 16 (23-24), 2193-2196 (2004)).
 - Other methods (FIB; e-beam, conventional &interference lithography)

CONFORMAL CHANNEL ETCHING

As anodized

90 min

135 min

RESULTS TO DATE

Early MCP prototypes with intrinsic or "native" AAO pores:

- Channel geometry: diam. 0.2 0.6 μm, pitch up to 1.2 μm
- Open area ratio up to 80% with funnel-like channel entrance on one face
- Feasibility of controllable bias (0 to 15°) confirmed.
- Size / Format: 25 mm produced; larger sizes (up to 150 mm) supported.
- Channel Modification: precision ALD modification of the resistance; secondary emission enhancement

Performance to date

- Excellent voltage breakdown resistance (up to 1000V).
- Resistance leveling off with voltage, as compared to a steady decline for Si or glass MCPs.
- Great resistance stability after a short stabilization period.
- Positive TCR (0.006 to 0.01/°C), eliminating "thermal runaway"
 - could enable high bias and high count rate
- Withstand temperatures up to 1100°C without loss of integrity

Evaluation of the electron amplification is in progress.

SCALE-UP AND PROTOTYPING

MANUFACTURING OF AAO MCP & s-MCP

AAO SCALE-UP

Free-standing AAO ("membranes")

- Commercial production, open sales
- Volume: 100's per week
- Size: from 3 to 150 mm (1/4 to 6")
- Different formats and specifications

AAO membranes supported by Al rim

- Facilitates integration into modules
- Membranes up to 11x18" were produced
- Scale-up in progress for several applications, leveraged by related products

Scale-up emphasis

- achieving target performance in large format
- achieving required durability in a module
- scaling cost- and productivity-limiting steps

Current AAO Membrane Products

STATUS of AAO-BASED MCPs

	CURRENT AAO MCP	STATUS AT SYNKERA		
PARAMETER	Micromachined Native pores		RISK	
Max Size	25 mm current prototypes	25 mm prototypes, up to 11" x 18" feasible	scaling new AAO processes	
Development status	prototype development	early feasibility	producing functional prototypes	
Channel Size, μm	2-3 (for 20:1) needs dev. for high L/D	up to 0.8 μm, (target 1 - 1.5 μ)	achieving high resolution in required size & AR	
L/D	up to 40 (for >10 μm)	10-200	achieving needed L/D with required resolution in practical format	
Channel Bias	needs development	feasibility demonstrated	validating in practical scale, is it needed?	
Resistance basic process developed			fine-tuning the physics; scaling to size	
TCR	0.006 to	0.01/°C	reduced thermal runoff	
Temperature Range	up to 1100°C confirmed		-	
Mechanical Durability	robust	very robust	-	
Lifetime / Stability	unknown	unknown	validating assumptions	
Competitive Posision	drop-in replacement	undefined (large area?)	lack of a thorough performance evaluation, validating assumptions	

DIFFERENTIATION & BENEFITS

Differentiation

- Micromachined or intrinsic nanochannels in refractory ceramic
- Simplified fabrication, lower cost
- Significant performance and reliability advantages over conventional glass MCPs

Projected Benefits

- Increased spatial and temporal resolution
- Improved image quality, (0.5 3 µm channels)
- High temperature integration of photocathodes
- Improved performance (signal-to-noise, dynamic range, local and global count rate)
- Excellent breakdown voltage (up to 10V/μm)
- Positive TCR eliminating "thermal runaway"
- Better stability and longer lifetime
- Platform for large area MCPs
- Lower cost, scaleable to mass-production

Synkera Ceramic MCP (micromachined)

Synkera Ceramic s-MCPs (intrinsic)

HOW CAN SYNKERA PARTICIPATE

CORE STRENGTH

- LEADER IN USING AAO AS MATERIALS AND TECHNOLOGY PLATFORM
 - LARGE NUMBER OF TECHNOLOGIES AND PROCESSES
 - SEVERAL PRODUICT LINES IN THE PIPELINE
- EXTENSIVE AAO SYNTHESIS, PROCESSING AND SCALE-UP CAPABILITIES
- HIGH THROUGHPUT ALD IN HIGH SURFACE AREA, LARGE SIZE SUBSTRATES
- FOCUS ON PRODUCT DEVELOPMENT AND END USER NEEDS

SPECIFIC CONTRIBUTION

- DEVELOPMENT OF "MICROMASHINED" AND "NATIVE" AAO SUBSTRATES
- ALD OF RESISTIVE AND EMISSIVE COATINGS
- FABRICATING AND SCALING-UP MCP PROTOTYPES
- FINANCIAL LEVERAGE THROUGH EXISTING NSF FUNDING

FUNDING / PARTNERS

NSF Phase II SBIR Project "New Ceramic Sub-Microchannel Plates"

- Grant #IIP-0724478
- \$500K, 09/01/07 08/31/09
- Phase IIB opportunity: additional 1:2 match for non-SBIR funding

NIH Phase I SBIR Project, "Ceramic Microchannel Plates for Biomedical Imaging"

- Grant #1R43EB003700
- \$200K, project ended
- Phase II opportunity (\$750K \$1.5M)

Partners

- Ossy Siegmund, Anton Tremshin (Space Science lab at UC Berkeley) testing
- Steven George (University of Colorado) ALD process development

CONTACTS

Product Development

- Dmitri Routkevitch, Ph.D.
 Product Manager & Principal Scientist -Nanostructured Ceramics droutkevitch@synkera.com 720-494-8401 x102
- Debra Deininger
 Product Manager Sensors
 ddeininger@synkera.com
 720-494-8401 x105

Corporate

Stephen S. Williams, Ph.D.
 President and CTO
 swilliams@synkera.com
 720-494-8401 x103

Brian Sperry
 Vice President, CFO
 bsperry@synkera.com
 720-494-8401 x116

